
DEF: Deep Estimation of Sharp Geometric Features in 3D Shapes

ALBERT MATVEEV∗, Skoltech, Russia
RUSLAN RAKHIMOV∗, Skoltech, Russia
ALEXEY ARTEMOV†, Skoltech, Russia
GLEB BOBROVSKIKH, Skoltech, Russia
VAGE EGIAZARIAN, Skoltech, Russia
EMIL BOGOMOLOV, Skoltech, Russia
DANIELE PANOZZO, New York University, USA
DENIS ZORIN, New York University, USA
EVGENY BURNAEV, Skoltech, AIRI, Russia

Fig. 1. (a) We leverage large collections of annotated geometric data to learn highly efficient patch-based deep models of distance-to-feature fields for range
scan data. (b) We develop a view synthesis-based approach to combining the inference of such distance-to-feature predictions into a complete estimate
for a full 3D shape. (c) Building upon our fields, we demonstrate the usage of our distance field in a downstream application, where we extract explicit
representations of parametric feature curves from raw range scan data. (d) As a result, we deliver an accurate reconstruction of geometry and topology for
both straight and curved feature lines, as displayed by a reference CAD model.

∗Both authors contributed equally to the paper
†The author served as a technical lead for the project

Authors’ addresses: Albert Matveev, Skoltech, Moscow, Russia, albert.matveev@
skoltech.ru; Ruslan Rakhimov, Skoltech, Moscow, Russia, ruslan.rakhimov@skoltech.ru;
Alexey Artemov, Skoltech, Moscow, Russia, a.artemov@skoltech.ru; Gleb Bobrovskikh,
Skoltech, Moscow, Russia, g.bobrovskikh@skoltech.ru; Vage Egiazarian, Skoltech,
Moscow, Russia, vage.egiazarian@skoltech.ru; Emil Bogomolov, Skoltech, Moscow,
Russia, e.bogomolov@skoltech.ru; Daniele Panozzo, New York University, Courant
Institute of Mathematical Sciences, New York, USA, panozzo@nyu.edu; Denis Zorin,
New York University, Courant Institute of Mathematical Sciences, New York, USA,
dzorin@cs.nyu.edu; Evgeny Burnaev, Skoltech, AIRI, Moscow, Russia, e.burnaev@
skoltech.ru.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

We propose Deep Estimators of Features (DEFs), a learning-based framework
for predicting sharp geometric features in sampled 3D shapes. Differently
from existing data-driven methods, which reduce this problem to feature
classification, we propose to regress a scalar field representing the distance
from point samples to the closest feature line on local patches. Our approach
is the first that scales to massive point clouds by fusing distance-to-feature
estimates obtained on individual patches.

We extensively evaluate our approach against related state-of-the-art
methods on newly proposed synthetic and real-world 3D CAD model bench-
marks. Our approach not only outperforms these (with improvements in
Recall and False Positives Rates), but generalizes to real-world scans after
training our model on synthetic data and fine-tuning it on a small dataset of
scanned data.

© 2022 Association for Computing Machinery.
0730-0301/2022/7-ART108 $15.00
https://doi.org/10.1145/3528223.3530140

ACM Trans. Graph., Vol. 41, No. 4, Article 108. Publication date: July 2022.

https://doi.org/10.1145/3528223.3530140

108:2 • Matveev, et al

We demonstrate a downstream application, where we reconstruct an
explicit representation of straight and curved sharp feature lines from range
scan data.

We make code, pre-trained models, and our training and evaluation
datasets available at https://github.com/artonson/def.

CCSConcepts: •Computingmethodologies→Machine learning;Com-
puter vision; Shape modeling.

Additional Key Words and Phrases: sharp geometric features, curve extrac-
tion, deep learning

ACM Reference Format:
Albert Matveev, Ruslan Rakhimov, Alexey Artemov, Gleb Bobrovskikh, Vage
Egiazarian, Emil Bogomolov, Daniele Panozzo, Denis Zorin, and Evgeny
Burnaev. 2022. DEF: Deep Estimation of Sharp Geometric Features in 3D
Shapes. ACM Trans. Graph. 41, 4, Article 108 (July 2022), 21 pages. https:
//doi.org/10.1145/3528223.3530140

1 INTRODUCTION
Most human-made shapes have sharp geometric features, narrow
curve-like regions with normals changing rapidly across the re-
gion. Sharp features are manually defined and explicitly stored in
CAD models, and they are fundamental to faithfully represent the
shape and function of CAD models. Detecting and reconstructing
sharp features from scanned data is a vital geometry processing
task: sharp feature curves can be used to improve the quality of
many algorithms, such as surface reconstruction, including approx-
imation with smooth patches, shape classification, and sketch-style
rendering of surfaces.
Algorithms based on a priori analytic models of geometric fea-

tures (e.g., using curvature and its derivatives) often require per-
object manual parameter tuning to detect features on a specific
object (Section 2), making them difficult to apply to large collections
of data or use as building blocks in a larger processing pipeline.
Data-driven, learning-based methods, including ours, are a natural
alternative for this task as they can leverage global information
extracted from a training dataset and automatically adapt to a par-
ticular input shape without user interaction.
Our goal is to develop a reliable feature detection algorithm for

sampled geometric data.While such data comes in a variety of forms,
we focus on point-sampled data, specifically of the type produced
by range scanners. Many other geometry representations (e.g., level
set meshes obtained from grid-sampled densities) can be easily
converted to this form. Some of the most important characteristics
of sampled geometric data include: (1) samples are almost never
directly on (sharp) features; (2) the number of samples can be high
(e.g., for a complex model, a large number of depth images are
typically combined into a single dataset with millions of points); (3)
the data may be noisy.

We propose Deep Estimators of Features (DEF), a new approach to
extracting sharp geometric features from sampled shapes, designed
to work with this type of data. We designed our algorithm with the
goals of capturing features without the need to sample them exactly,
scaling to complex 3D models and large, possibly noisy, point clouds
naturally, while at the same time enabling compatibility with real-
world 3D acquisition setups (see Figure 1).

Our approach is based on defining features implicitly, by a distance-
to-feature function; the problem we solve is a regression problem

for this scalar function sampled in input points. The advantage of
using a continuous distance-to-feature function, compared, e.g., to
a binary classification of points as feature and non-feature points,
is that it is much more natural for samples not aligned with feature
and noisy samples.
To address the need of handling large and complex models, we

use local patch-based distance-to-feature prediction instead of a
single-pass global prediction on the entire shape.

As for any supervised learning method, the quality of the results
depends on the quality and size of the training dataset. Obtaining
real 3D scanned data with ground truth is difficult, as it requires
either manual annotation of scanned models, or precise fabrication
and scanning of CAD data with annotated features; we follow the
latter approach for our real dataset. For this reason, our method uses
a two-stage training process (cf . [Gaidon et al. 2016] and [Handa
et al. 2016]): we train an initial model on a large synthetic dataset
and fine-tune it on a smaller dataset of 3D scanned data. The former
is obtained by using a simplified simulated scanning process for a
large number of models from ABC dataset [Koch et al. 2019]. For
the latter, we fabricate and scan a smaller subset of ABC models,
transferring annotations from the original CAD models.

We demonstrate that our method performs favourably on a num-
ber of metrics (RMSE, Recall, FPR) to four classical and learning-
based state-of-the-art methods: VCM [Mérigot et al. 2010], Sharp-
ness Fields [Raina et al. 2019], EC-Net [Yu et al. 2018], and PIE-
NET [Wang et al. 2020].
As a sample application using our algorithm, we show that an

explicit parametric representation of feature curves can be extracted
from the estimated distance-to-feature fields produced by our algo-
rithm (Figure 1 (c)), producing higher quality results, both qualita-
tively and quantitatively, than recent learning-based methods [Liu
et al. 2021; Wang et al. 2020].

In summary, our contributions are:
(1) A method for estimating coherent distance-to-feature fields

for high-resolution, high complexity sampled 3D shapes, in-
cluding localized, CNN-based initial estimation of the field
and global fusion of local estimates.

(2) A pipeline for constructing large simulated training datasets
with controllable noise and different sampling patterns. This
pipeline is used to produce a collection of benchmarks suitable
for comparison of geometric feature detection algorithms.

(3) A process for constructing a real 3D scan dataset with ground
truth distance-to-feature annotations and a new publicly
available labelled set of range scans that can be used as a
realistic benchmark.

2 RELATED WORK
Estimation of sharp features has been studied extensively in com-
puter vision and computer graphics. We review both algorithmic
methods relying on local estimation of differential surface properties
and data-driven methods.

Normal Estimation, Clustering, Feature Detection on Local Sets. A
popular family of methods [Bazazian et al. 2015; Demarsin et al.
2007; Weber et al. 2010] identifies a group of samples in a small area,
computes their Gauss map using the samples’ normals, and performs

ACM Trans. Graph., Vol. 41, No. 4, Article 108. Publication date: July 2022.

https://github.com/artonson/def
https://doi.org/10.1145/3528223.3530140
https://doi.org/10.1145/3528223.3530140

DEF: Deep Estimation of Sharp Geometric Features in 3D Shapes • 108:3

Fig. 2. Our patch-based pipeline for generating image-based (b, d) and point-based (c, e) training datasets proceeds as follows: (a) starts with a 3D CAD model,
(b)–(c) extracts local triangulated patches and associated interior sharp feature curves, acquires ray-casted depth images and sampled point clouds, and
computes local distance-to-feature annotations. The diversity of image and point patches in our large-scale training datasets (d)–(e) enables us to train highly
effective sharp feature estimation models.

clustering to classify the neighborhood as belonging to a feature
or not. Similar ideas can be applied to feature-preserving point set
resampling [Huang et al. 2013]. A special case of such local estima-
tors is Voronoi Covariance Measure estimator (VCM) [Mérigot et al.
2010]. It is based on constructing Voronoi cells of the local neighbor-
hoods of points and computing covariance matrices of these cells.
From these matrices, normals, curvature, and feature curves can be
estimated. These methods require per-model tuning of parameters
for both normal estimation and feature detection. In comparison,
our method exploits the availability of datasets and automatically
tunes its parameters to work on a collection of diverse shapes.

Surface Segmentation. Instead of directly detecting features, meth-
ods based on surface segmentation identify surface patches first
and then classify them as features the interface between them [Lin
et al. 2017]. Additional priors can be used to help the segmentation,
for example, for patches that are known to be developable [Lee
and Bo 2016]. Several works [Lê et al. 2021; Li et al. 2019; Sharma
et al. 2020] have attempted to fit surface patches after segmentation,
however these approaches do not use feature curves and produce a
disconnected set of surface patches with rough boundaries. These
methods inherently require the entire model and cannot be applied
to single views or incomplete models. Differently, our approach is
directly applicable to incomplete data.

Patch Fitting. Feature fitting methods use a predefined set of
primitives [Cao et al. 2016; Torrente et al. 2018] which are fitted
to large regions of the mesh. These approaches are robust to noise
but increase the computational cost and require the features to
be contained within a set of predefined shapes. Typical choices of
features vary from a pair of planes sharing one edge [Lin et al. 2015]
to spline curves. A related, but somewhat distinct method [Daniels
et al. 2007; Daniels Ii et al. 2008] relies on robust moving least squares
(RMLS) [Fleishman et al. 2005]. This approach uses the quality of
the local RMLS fit to determine the number of separate patches, and
computes curve feature points as surface intersections, with several
processing stages to obtain the curves. As with other categories,
many parameters need to be adjusted to obtain good results.

Ground Truth and Representations. Only recently, several syn-
thetic large-scale datasets with annotated features have been re-
leased [Kim et al. 2020; Koch et al. 2019; Willis et al. 2020]. In this
work, we provide the first large-scale, objective comparison of algo-
rithms working on triangle meshes and point clouds using the ABC
dataset [Koch et al. 2019] and a real scan dataset derived from it.

Data-Driven Approaches. The identification of points lying on a
sharp feature is most commonly cast as a binary classification prob-
lem, using a surface neighborhood as features. Different machine
learning models were used, such as random forests [Hackel et al.
2016; Hackel et al. 2017], pointwise MLPs [Raina et al. 2019; Wang

et al. 2020; Yu et al. 2018], or capsule networks [Bazazian and Parés
2021]. A recent work [Himeur et al. 2021] presents a lightweight
MLP-based architecture paired with differential geometry-inspired
scale-space matrices that encode features discriminative for edge
detection. The methods that are closest to our work are [Liu et al.
2021] and [Wang et al. 2020]; they detect features and corners and
approximate analytic curves. We compare against state-of-the-art
learning-basedmethods, discussing results and details in Section 7.2.

3 OVERVIEW
The input to our algorithm is a set of depth images (possibly with
missing data), for a given object. In the case of real scanned data,
these images are obtained directly from the scanner; in the case of
synthetic mesh data, we simulate the scanner to generate a collection
of depth images from a mesh (Section 4.2). The algorithm outputs
estimates of the truncated distance-to-feature scalar function for
each input point. Figure 1 (a)–(b) illustrates this process.

The four main components of our method are:

(1) Training Data Construction (Section 4). We generate synthetic
training data using the ABC dataset [Koch et al. 2019], ob-
taining collections ranging from 16,384 to 262,144 training
instances. To fine-tune the model and evaluate its perfor-
mance on real scans, we introduce a fabrication, scanning,
and semi-automatic annotation pipeline to create a dataset
of 84 real-world models. Our data generation pipeline ac-
cepts a set of meshes and their associated feature annotations
(edges marked as sharp) as input and produces a set of point-
sampled local patches with point-wise distance-to-feature
labels as output (Section 4.1). We specify the details on the
implementation of our two datasets, the synthetic DEF-Sim
and the real-world DEF-Scan, in Sections 4.2–4.3.

(2) Patch-Based Deep Estimators (Section 5.1). We train a family
of deep feature estimators (DEF), which produce distance-to-
feature estimates, on patches (depth images) of the synthetic
dataset and fine-tune on a subset of the real-world dataset.

(3) Estimation on Complete 3DModels (Section 5.2). The per-patch
distance-to-feature predictions produced by DEFs are fused
together by transferring estimates from each patch to overlap-
ping patches and combining into a coherent global estimate.

(4) Feature Fitting (Section 6). The last (optional) component
extracts explicit feature curves from the distance-to-feature
function. We show that with our distance function estimate,
simple corner detection, combined with kNN clustering and
spline fitting, produces higher quality results than state-of-
the-art methods.

ACM Trans. Graph., Vol. 41, No. 4, Article 108. Publication date: July 2022.

108:4 • Matveev, et al

4 DATASETS WITH DISTANCE-TO-FEATURE
ANNOTATION

4.1 Dataset Design
Feature Definition. Each CAD model in the ABC dataset has a

boundary representation (B-Rep), that partitions its surface into a
collection of CAD regions and associated parametric curves. We
identify sharp features as curves at the interface between any two
regions for which the normal orientations defined in either region
differ by more than a threshold αnorm (18°) as was done during the
construction of ABC dataset. The threshold is necessary as B-Rep
divides smooth areas in regions, which may result in false features.

Directly using the original parametric representations, however,
makes it difficult to construct a large training dataset, as B-Reps ei-
ther need to be traversed using off-the-shelf geometric kernels [Open
CASCADE Technology OCCT 2021; Parasolid: 3D Geometric Mod-
eling Engine 2021], a software not designed for batch processing, or
require re-implementing a set of elementary operations like closest
point, which require nonlinear solvers on B-Reps. To avoid these
issues, we use the triangulated versions of the ABC models, where
CAD region and sharp feature curve labels are available for vertices
and edges in each mesh; we introduce a set of easily testable geo-
metric conditions into our data generation procedure to prevent
introducing significant geometric errors when sampling B-Rep data.
We use the curve annotation provided in the ABC dataset to identify
the mesh edges which were marked as sharp to base our distance
field on the proximity to the corresponding mesh edge.

Patch and Feature Selection. Mesh models in ABC vary signif-
icantly in geometric complexity [Koch et al. 2019], requiring an
adaptive number of samples to represent their 3D surface geometry
(in the original dataset, meshes are sampled with 102–107 vertices),
see Figure 4. However, having variable size, high resolution 3D
shapes as input is not a good fit for training most state-of-the-art
learning algorithms, which require a fixed number of samples and
require too much memory and training time to handle hundreds
of thousands of samples [Henderson et al. 2020]. To address this
problem, we decompose each shape into a collection of patches with
a small and fixed number of samples, see Figure 2 (a)–(c); this is
different from a number of existing trainable approaches [Wang
et al. 2020] that represent entire shapes with the same (fixed) number
of samples.
Selecting patches and feature curves for training has a direct

impact on performance. We distinguish between interior, contour,
and proximal exterior curves, depending on their visibility status;
we keep interior curves for annotation and exclude the latter two
types. Features appearing as a contour of a sampled region are diffi-
cult to distinguish from smooth features; being adjacent to only a
single visible surface patch provides insufficient spatial context for
inferring these from point samples. Exterior features pass within dis-
tance truncation radius ε but still outside the visible patch. Including
exterior features would lead to distance-to-feature annotations indi-
cating feature proximity; however, regressing such features from the
local patch context would be impossible due to absence of samples
covering them. In contrast, we generate the per-patch annotations
locally in each patch, using only feature curves passing through the

Fig. 3. The same depth data in column (a) may be annotated differently,
depending on which adjacent feature curves are included when computing
distances. Contour features (i.e., features adjacent to only a single visible
surface patch; shown in column (b), rows 1–3) are difficult to distinguish
from smooth contours; exterior features in close proximity (i.e., features
passing outside patch but within distance truncation radius ε ; shown in
column (b), rows 2–4) are impossible to detect due to absence of samples
covering them. We opt to generate the per-patch annotations locally in each
patch, using only feature curves passing through the patch interior (i.e.,
both adjacent surface patches are sampled, shown in column (c), rows 1–4).

patch interior. Figure 3 demonstrates example annotations obtained
by varying the set of included features.
Similarly, patches with depth discontinuities and gaps repre-

sent challenging cases with many contour feature curves, see Fig-
ure 3, rows 2–3; however, these naturally occur due to shape self-
occlusions or ray misses during both ray-casting and real scanning.
We have experimentally observed that including such instances
in training improves performance, particularly at near-boundary
pixels that are regressed more accurately; we discuss their effect
and alternatives in our ablative experiment (Section 7.4).

Distance-to-Feature Computation. As our focus is on sharp feature
detection, large values of the distance-to-feature function have little
impact on feature localization but require more effort to predict
correctly. For this reason, we define a truncated distance-to-feature
field dε (p) in each location p ∈ R3 using the proximity to a subset
of mesh edges corresponding to (sharp feature) curve segments
Γ = {γk }

K
k=1 in R

3 as follows. We find for p its closest Euclidean
neighbor located at one of the segments in Γ, i.e. a point q(p) s. t.

∥q(p) − p∥ = min
γk ∈Γ

inf
q∈γk

∥q − p∥, (1)

and define the dε (p) by

dε (p) = min(∥q(p) − p∥, ε), (2)

ACM Trans. Graph., Vol. 41, No. 4, Article 108. Publication date: July 2022.

DEF: Deep Estimation of Sharp Geometric Features in 3D Shapes • 108:5

Fig. 4. Differently from existing approaches, that represent all mesh models
(a) by a fixed number of samples (b) despite dramatic differences in their
geometric complexity (cf . rows 1 and 2), we decompose input 3D models
into variable-length sets of local patches with a fixed number of samples;
as a result, complete 3D shapes sampled using our method have variable
number of samples (c).

where we set our truncation radius ε to a multiple of the sampling
distance r (we set ε = 50, rhigh = 1 where rhigh = 0.02 is a base sam-
pling step), leaving a sufficiently wide envelope where our distance
field may provide meaningful feature-related information.
We use Euclidean distance as opposed to the geodesic distance

along the surface. We compute distance-to-feature annotation for a
sampled point p by associating it to the closest surface spline region
within the patch (this association accounts for sampling noise) and
only considering sharp feature curves belonging to the contour of
that surface region in the ABC feature annotation, see Figure 5. More
generally, we construct a surface region/feature curve adjacency
graph where each surface region and feature curve (two nodes)
that share mesh vertices are connected by an edge, and perform
depth-first search of depth k to determine which features should
be included in the distance computation over a particular surface
region. We additionally record q(p) − p, directions to the closest
points on the feature curves, for use in the ablation study.

Feature Size and Sampling Density. To accurately reconstruct the
distance-to-feature function, it is not safe to rely on fixed-size input
point clouds for whole objects (as it is done in recent literature [Liu
et al. 2021; Wang et al. 2020]), since many curves are left severely
undersampled, see Figure 4. Instead, we assume that most feature
curves are sufficiently densely sampled, and that the presence of
feature curves can be inferred from the positions of samples; that
leads us to have an adaptive number of point samples per object.
This assumption is motivated by a common practice in high-quality
3D data acquisition of adapting the number of points per object and
sensor placement to the geometric complexity and size of the object.

Pruned Adjacency
Graph (Ours)

S7

γ6

Adjacency-Based
Annotation (Ours)Ωγ6

Surface/Curve
Adjacency Graph

S3

S4

S5

S6

S7

γ3

γ4γ5

γ6

γ2

γ1

S1

S2

Naive
AnnotationΩγ1

γ2 γ3

γ4γ5

γ6

S7p1

p11ΩPatch Regions

γ1

γ2 γ3

γ4γ5

γ6

S1

S2 S3

S4

S5

S6

S7

ΩPatch

Ω
CAD Shape

Ω1
2

(b)(a) (c) (d)

Fig. 5. Extracting a patch from an example 2D CAD shape in (a) produces
a mesh fragment consisting of seven surface regions Sl along with six
associated interior feature curves γk (rows 1–2 (b)). For samples pi ∈ S7,
naive computation of distances dε (pi) maps p1, . . . , p7 to the feature γ5
(row 1 (c)) which is disconnected from the region S7, despite proximity in the
Euclidean sense (row 2 (c)). In contrast, we compute more natural distances,
excluding non-contour curves for each surface region (for S7, all but γ6 are
excluded as in row 1 (d)) by constructing and pruning the surface/curve
adjacency graph (row 2 (d)).

One way to reason about “sufficient” sampling is to choose a
characteristic (object-dependent) spatial size l for each shape and
require that features of size close to l are represented by, on average,
n samples. Formally, we require the following relation to hold:

r︸︷︷︸
sampling
distance

× n︸︷︷︸
num. samples
per feature

= l︸︷︷︸
characteristic
spatial size

× s︸︷︷︸
scaling
factor

, (3)

where we are free to vary either the sampling step r or the object
scaling factor s to achieve the equality (in practice, for each partic-
ular dataset, we fix r and vary s). Our characteristic spatial size l
is a linear measure set to 25% lower quantile of the distribution of
sharp feature curve extents, where “extent” denotes the maximum
of three dimensions of an axis-aligned bounding-box enclosing a
curve. Figure 6 provides an illustration of this scheme.

Patch-Based Datasets. We run our patch generating algorithm on
the first five chunks of the ABC dataset (37,945 3D shapes) and obtain
three major data varieties at low, medium, and high resolution by
choosing nlow = 8, nmed = 2.5 × 8 = 20, and nhigh = 2.52 × 8 = 50
samples per curve. Each resolution corresponds to sampling distance
rlow = 0.125, rmed = 0.05, and rhigh = 0.02, respectively. Similarly
to related methods [Wang et al. 2020; Yu et al. 2018], we model
acquisition uncertainty using additive Gaussian white noise; we
use five scales in the viewing direction with a standard deviation
σ ∈ { r8 ,

r
4 ,

r
2 , r , 2r }, for the high-resolution data only. For each of

the mentioned variations we obtain training sets of sizes ranging
from 16,384 to 262,144 patches to assess the impact of dataset size
on performance (see Supplementary material for details).

Complete 3D Model Datasets. Complementing our patch-based
data, we constructed datasets of 3D shapes representing object-level
data samples of 3D CAD models, both synthetic and real.

ACM Trans. Graph., Vol. 41, No. 4, Article 108. Publication date: July 2022.

108:6 • Matveev, et al

0
n·r
2n·r
3n·r

·
·
·

Num
. Sam

plesD
(a)

CAD Shape Curve Extents Distribution
Characteristic
spatial scale

l=n·r

(c)

Feature Curve
Decomposition

(b)

Fig. 6. For an input CAD shape in (a), we analyze the distribution of sharp
feature curve extents in (b) and relate a sampling radius r to features of
characteristic spatial size l , sampling these with at least n points in (c) (see
Equation (3) and surrounding text).

We emphasize that the design principles outlined in this section
are used uniformly for both our synthetic and real-world datasets,
enabling direct fine-tuning of our networks for the real scenario.
We have selected a diverse set of 68 distinct CAD models from

the ABC dataset. Our focus when choosing the models is to cover
a variety of qualitative properties, including (1) presence of thin
walls and (2) various types of surface regions (e.g., flat, cylindrical,
splines, and spheres), (3) curved and straight features, (4) variety of
angles incident on sharp features, and (5) presence of fillets. The
statistics of the selected models are analyzed in the Supplemental.
The models are sampled and annotated as described in this Section
to form the input complete 3D shapes.

4.2 Synthetic Datasets: DEF-Sim
Our synthetic datasets provide collections of local patches and
68 complete 3D models in varieties of low, medium, and high reso-
lution, and several noise levels.

Shape Sampling. We set up nv virtual cameras with locations
evenly distributed on a sphere around an object (we use Fibonacci
sampling [Hannay and Nye 2004]) and the z-axis pointing at its
center of mass. For each camera, we create a regular grid (image)
with 64 × 64 pixels (we specify r as the pixel size) and cast rays
from each pixel’s corner in a direction perpendicular to the grid,
obtaining patches with up to 4,096 point samples each (some may
not correspond to an object point and are set to a background value).
Knowing the camera parameters (K,T) where K ∈ R2×3 is an

intrinsic matrix transforming point coordinates from the camera
coordinate frame to the image plane and T ∈ R4×4 an extrinsic
camera matrix transformation from the camera coordinate frame to
a global coordinate frame [Hartley and Zisserman 2004], sampled
points pi j = (xi j ,yi j , zi j) (in homogeneous coordinates) may be
identified with a depth image I = (zcami j), where zcami j = (KT−1pi j)3
denotes z-coordinate of point pi j in the camera frame. We create the
distance-to-feature annotations image by computing d = (dε (pi j))
and record the pair (I ,d) as the training instance. We use nv = 18
and augment the dataset by rotating and offsetting the image grid
during data generation, but maintaining the same orientation of
z-axis; we discuss the effect of having varying number of views nv
in the ablation study (Section 7.4).

4.3 Real-World Datasets: DEF-Scan
To support generalization to real-world scanning data, we con-
structed a dataset of 84 real objects and semi-automatically an-
notated them. Figure 7 presents an overview of the steps involved
in the construction of our datasets; details on the selection of CAD
models are mentioned in Section 4.1.

Fabrication. As we sought to fabricate a multitude of arbitrary 3D
models with high geometric complexity, we opted for fabricating the
models using 3D printing, as it can easily produce shapes directly
from CAD models. We used two commodity polylactic acid (PLA)
devices (Ultimaker 3 and Ultimaker S5) and considered implications
of this choice (most importantly, its accuracy and layer thickness of
0.1mm). We choose the printed object size to allow acquisition with
our 3D scanner at a specific sampling density of the features while
simultaneously avoiding scanning any fabrication artifacts. We pick
a sampling density value r > 0.1mm for our 3D scanner by selecting
a scanning distance (see below), and compute a scaling factor si a
for each fabricated modelMi individually using the relation (3). The
fabricated CAD models are displayed in Figure 8.

Scanning. Our depth acquisition process seeks to obtain a homo-
geneous set of range scan data capturing most of the surface for
the fabricated models and suitable for point-based and image-based
training. We use RangeVision Spectrum [RangeVision Spectrum
2021], a commercial structured light 3D scanner, to acquire the ge-
ometry of the fabricated objects in the form of depth images. The
scanning sequence we use captures the object from two orientations
w.r.t. the scanner, differing by 90°; in each orientation, we take a scan
every 30° using an automated turntable to minimize the operator
time. Our resulting scans are acquired from an average range of
2m and have the resulting sampling distance r of approximately
0.5mm. In total, we have acquired 1928 depth images correspond-
ing to 166 scanning sequences of 84 unique objects. We give more
detailed statistics on our real-world dataset in the Supplemental.

Registration with the CAD Models. Our 3D scanner automatically
provides an initial alignment between the obtained 3D scans; how-
ever, we found this alignment too coarse. Hence, we manually regis-
tered all scans to their respective CAD models using the Align Tool
in MeshLab [Cignoni et al. 2008] by first marking 3 points on each
scan-mesh pair for rough manual alignment, followed by running
the ICP algorithm for refinement. We find that manual alignment
results in significantly tighter fits.

5 DEEP ESTIMATION OF DISTANCE-TO-FEATURE
FIELDS

5.1 Learning Patch-Based Deep Estimators
We train our deep regression models by solving the standard learn-
ing task: given a set of N training instances, find

min
θ

1
N

N∑
i
L(di , f (Pi ;θ)),

wheredi is the ground-truth distance-to-feature field for the patch Pi ,
f (·;θ) is the model with trainable parameters θ , and L is the loss
function. We have considered a few options for elements in this

ACM Trans. Graph., Vol. 41, No. 4, Article 108. Publication date: July 2022.

DEF: Deep Estimation of Sharp Geometric Features in 3D Shapes • 108:7

Fig. 7. (a) We have selected a diverse set of 84 3D CADmodels from the ABC dataset and (b) fabricated them in thermoplastic using the 3D printing technology.
(c) We further obtained 12 scans of each shape in two different orientations (totalling 24 scans per object) using a commercial structured-light 3D scanner. (d)
We semi-automatically registered the 3D scans onto the original CAD model, computed distance-to-feature annotations in (e), and finally processed the scans
to obtain our patch-based datasets.

setup, to identify an optimal learning configuration. We summarize
these choices below and present the qualitative comparisons of dif-
ferent options in Section 7.4 and their effect on method robustness
in Section 7.5.

Network Architectures and Losses. Overall, we found that CNNs
working with regularly resampled data outperform point-based
networks for our task (Table 6). We require our deep models to
generalize to many unseen targets with high geometric variability,
thus we search for network architectures with sufficient capacity.
We use the U-Net CNN model [Ronneberger et al. 2015], which has
proven effective for image-based dense regression [Xue et al. 2019],
and probe the ResNet family [He et al. 2016], selecting the largest
(ResNet-152) base network based on the quality of predictions on
the validation set. For full details on the influence of model size on
performance, we refer to Supplemental.

We compare three types of losses for our regression task: L1 loss,
L2 (MSE) loss, and the Histogram loss [Imani and White 2018]. The

Fig. 8. A photo of the thermoplastic 3D CAD models fabricated for the
evaluation of our approach in a real-world setting.

Table 1. In our experiments, directly optimizing Histogram loss [Imani and
White 2018] significantly improves performance across different quality
measures. We present results computed using the validation set of depth
images (with background), with sampling distance rhigh = 0.02, and noise
variance σ 2 = 0.

Loss RMSE ↓ RMSE-q95 ↓ Recall (1r), %↑ FPR (1r), %↓
×10−3 ×10−3

L2 (MSE) 101.3 643 24.2 0.11
L1 (MAE) 108.7 691.2 23.5 0.06

Histogram 61.5 361.1 57.4 0.06

latter one requires the model to produce a histogram of values over
a predefined interval; we empirically found out that histograms with
244 bins work best on the validation set. Overall, we observed that
learning with the Histogram loss considerably improves regression
quality measured by all metrics as presented in Table 1. We attribute
this to the restriction being imposed on the range of the possible
target (ground-truth) distances, allowing the network to focus on
a narrow range of targets. Our final setup with the Histogram loss
predicts a confidence score for each bin in the histogram and com-
putes the final output as a weighted sum of bin centers multiplied
with their respective normalized predicted scores.

Additional Inputs, Supervision, and Data Volume. The second crit-
ical ingredient that we investigate is the dataset size and features
available in training datasets.
To assess the gains from additional inputs, we concatenate the

additional values to the point coordinates: we used the binary sharp
feature point segmentation labels obtained by the non-learning
algorithm VCM [Mérigot et al. 2010], ground-truth normals, as well
as both of these values, keeping distances as our only target variable.
Neither of these additional annotations resulted in performance
improvement.

To evaluate whether learning configurations for our task benefit
from richer supervision compared to distances only, we introduce

ACM Trans. Graph., Vol. 41, No. 4, Article 108. Publication date: July 2022.

108:8 • Matveev, et al

Fig. 9. Network responses to probe depth images sampled at different rates
reveal high feature sensitivity and sampling robustness of our deep models;
in instances with sufficient samples between feature curves, our method
efficiently relates samples to respective closest feature lines. We obtain
ground-truth data (a)–(b) by raycasting a 3D model at sampling distances
rhigh = 0.02, rmed = 0.05, and rlow = 0.125 and produce predictions (c)–(e)
using DEFs pre-trained for regressing features at rhigh = 0.02, rmed = 0.05,
and rlow = 0.125, respectively.

additional network heads regressing either normals, normalized
directions towards the nearest sharp feature line, or both simultane-
ously. During training with these targets, we optimize a multi-task
loss consisting of our main loss and a weighted sum of MSE losses
with weights chosen to balance the magnitude of losses: 10−3 for
normals, and 10−2 for directions. None of these configurations led
to improved regression performance either. We also trained the net-
work on datasets of increasing size; we observed that performance
stabilizes for datasets with more than 64,000 training instances.
In summary, the best-performing choice of architecture was a

CNN U-Net with ResNet-152 backbone, trained using the Histogram
loss using the supervision from ground-truth distances d(p) only,
on datasets of size at least 64,000. We present detailed results of
mentioned experiments in the Supplementary material.

Feature Detection at Varying Sampling Distances. Each DEF net-
work, though trained on data with a specific sampling rate r in (3),
can detect interior features sampled at significantly different rates;
in Figure 9, features sampled at rlow = 0.125 are robustly regressed
by DEFs trained on 2.5× (rmed = 0.05) and 6.25× (rhigh = 0.02) finer
sampling, and vice versa. Importantly, when sampling distance in
inputs matches that of training datasets, DEF predicts a proper dis-
tance field; otherwise, DEF produces a scale-transformed proximity
field whose iso-contours capture true features.

5.2 Reconstructing Distance-to-Feature Fields
on Complete 3D Models

The trained deep estimators sense distance variations in the direct
vicinity of the interior curves visible in individual patches of an
input shape; predictions in any two distinct patches may diverge
substantially if feature curves are captured differently (e.g., a feature

appears as an interior curve in one patch but shows up as a contour
in another), see Figure 10 (c). Given a set of these partial and incon-
sistent estimates (with known camera parameters), we reconstruct
a distance-to-feature field defined globally on a complete 3D shape;
we give an overview of this fusion process in Figure 10.

Patch Extraction. (Figure 10 (a)–(b).) We convert an input 3D
model into a collection {Ii }

nv
i=1 of nv range images suitable for our

patch-based DEF. We assume that the input 3D shape either already
comes as range images (e.g., for range scanning) or can be resampled
(e.g., represents volumetric data). In the latter case, we obtain depth
maps of the input shape from multiple distinct directions using
raycasting. As our deep models are fully convolutional, we employ
full-object views Ii of input 3Dmodels to compute predictions, which
we found to perform similarly to predicting on patches of the size
our network was trained on, while being more convenient.
Crucially for the completeness of the reconstruction, sufficient

number of views of the input shape must be provided to capture
most features; features not visible in at least one view are likely to
be missed. We observed that for all of the considered 3D shapes,
using nv = 128 directions is sufficient to sample more than 97%
of triangles of the corresponding meshes with at least 8 samples;
we study the influence of the number of input views in Section 7.5.
However, some shapes with many parts of their surfaces visible
only from narrow cone of directions, different for each (e.g., with
many deep indentations) may require many additional directions.

Patch-Based Distance-to-Feature Estimation. Each patch Ii is pro-
cessed independently using our neural network (Section 5.1), yield-
ing predictions d̂i sensitive to interior feature curves, as shown in
Figure 10 (c).

Transfer of Predictions across Patches. The aim of this stage is to
gather predictions from multiple processed patches in each sampled
point, integrating feature-sensitive information across the complete
3D shape. The central idea is to employ a warping-based view syn-
thesis mechanism (similar to [Khot et al. 2019]): taking each pair
of source and target views, we synthesize distance signal in the
target view conditioned on the information inferred from the source
view. Computational complexity of our distance estimation method
depends on the number of sampled points in each view and (quadrat-
ically) on the number of views nv .
Let a particular pair (s, t) of source and target views be repre-

sented by depth images Is , It , their associated intrinsic K and extrin-
sic Ts ,Tt matrices, and distance-to-feature estimate d̂s available in
the source view; we seek to construct a warped signal d̂s→t

t from this
information. For each pixel p = (u,v) in a target image It , we com-
pute the warped coordinates p̂ in the source view by re-projecting
p to the image plane of Is :

p̂ = KT−1
s Tt

(
It (p) · K

−1p
)
.

To compute the warped distance-to-feature estimate d̂s→t
t (p) at the

target pixelp, we resample a local continuous distance field obtained
by bilinearly interpolating d̂s on the grid of samples of the source
patch Is around the warped coordinates p̂:

d̂s→t
t (p) = d̂s (p̂).

ACM Trans. Graph., Vol. 41, No. 4, Article 108. Publication date: July 2022.

DEF: Deep Estimation of Sharp Geometric Features in 3D Shapes • 108:9

Fig. 10. Our method for reconstructing distance-to-feature fields on 3D shapes is built around postprocessing distance-to-feature predictions obtained in
individual patches (or views). (a)–(b) First, we extract a collection of overlapping patches by scanning an input shape from multiple viewing directions. (c) We
process each patch using a DEF network to obtain patch-based predictions, sensitive to interior feature lines only. (d) We leverage the multiple view stereopsis
machinery to transfer distance-to-feature fields to adjacent views by reprojecting and linearly interpolating single-view predictions (warping-based view
synthesis). (e) The final estimate of our field on a complete 3D model is obtained by a robust statistical inference procedure.

We additionally compute a binary visibility maskvs→t
t (p) indicating

which pixels have been correctly interpolated as some pixels have
insufficient number of neighbors to resample from (see Supplemen-
tary material for details). The number of predictions for a pixel p is
equal to the number of depth images from which the pixel is visible.
Example interpolation results are shown in Figure 10 (d).
As a result, each 3D sample p captured by each depth image Ii

is described by a set Dp of valid predictions interpolated from all
views {Is }nvs=1:

Dp =
{
ds |ds = d̂

s→i
i (p) where vs→i

i (p) = 1
}nv
s=1. (4)

Inference of the Final Distance Field. The assembled predictions
are processed to form a final distance estimate by feeding the set
Dp into an inference set-function д. We have considered a num-
ber of approaches to constructing д (we present an ablation study
in Section 7.4); computing a minimum over all predictions of the
distance d̂(p) = min

ds ∈Dp
ds proved to be the most accurate among

all approaches we tried, which includes computing simple, robust,
or truncated averages, variants of weighting schemes, and fitting
a robust locally linear regression. More details on computing the
variants of the inference function are presented in the Supplemental.

6 APPLICATION: EXTRACTION OF PARAMETRIC
FEATURE CURVES

To evaluate the quality of distance-to-feature fields reconstructed
using our method, we designed an algorithm for extracting para-
metric feature curve networks employing the estimated fields. Our
algorithm is based on simple local classifiers for detecting corner

vertices, heuristic graph structure analysis, and spline fitting. Mak-
ing a number of careful choices, we are able to fit significantly
more accurate feature curve networks compared to recent methods
PIE-NET [Wang et al. 2020] and PC2WF [Liu et al. 2021].

A preliminary version of our method was presented in [Matveev
et al. 2021]; similarly to the method described in this section, it
uses DEF’s distance-to-feature output to produce a set of feature
curves. We keep the overall structure of the approach, re-use its
segmentation and spline fitting steps, and follow the same stages
as in the earlier work. However, we contribute an improved corner
and curve endpoint detection criteria in (5), (7); a more robust kNN-
based polyline construction stage and an optimization functional
in (9); a post-processing technique in (11), all resulting in significant
performance improvements of the method. We refer the reader to
Figure 18 for qualitative demonstration of the difference between
the two algorithms.

Initialization. At the initial stage, given a point cloud P , we select
Psharp that consists only of points with estimated distance d̂ less than
dsharp. To further reduce the number of points, we apply Poisson
disk sampling, leaving only 10% of points to reduce the size of the
set and make the point distribution more even.

Corner Detection. Corner detection is designed as an aggregation
procedure of several corner estimates constructed from a grid of
parameters. We sample anchor points across Psharp (we use 20% of
points in Psharp chosen by farthest point sampling) and build sets Bi
of points contained in overlapping Euclidean balls of a radius Rcorner
centered at the anchor points and covering Psharp.

ACM Trans. Graph., Vol. 41, No. 4, Article 108. Publication date: July 2022.

108:10 • Matveev, et al

Fig. 11. (a) We propose a parametric curve extraction method based on an input dense point cloud with a per-point estimated distance-to-feature field. We
threshold distances to obtain a subset of samples Psharp that we use to (b) estimate corner probabilities and (c) construct curve instance segmentation (black
clusters correspond to the detected corner neighborhoods). (d) Detected corners and curves allow building and optimizing a curve graph that reflects the
curve connectivity. (e) We finally translate the curve graph into a set of accurate parametric curves that reflect feature geometry of the reference shape (f).

We approximate each of these local sets by an ellipsoid by com-
puting PCA on points in the set and obtain vector of variances
(λ1, λ2, λ3) such that λ1 ⩽ λ2 ⩽ λ3 and

∑3
k=1 λk = 1, describing

lengths of ellipsoid axes. For each specific set Bi , we use these vec-
tors to compute a squared distance-normalized aggregate:

Λi =
3∑

k=1

∑
j ∈Ni

(
λik − λ

j
k

δi j

)2
, (5)

where Ni is a collection of indices of the sets Bj nearest to the set
Bi , and δi j is a Euclidean distance between anchor points of sets
Bi and Bj . This quantity measures how much a specific ellipsoid
deviates from the neighboring ones.
We decide whether a local set Bi belongs to corner cluster by

comparing Λi against the characteristic threshold Tvariance, and
mark Bi as either corner or curve type set:

Bcorner = {Bi | Λi > Tvariance},

Bcurve = {Bi | Λi ⩽ Tvariance}.
(6)

We evaluate this classification for all combinations ofNi ,Tvariance,
and Rcorner, each varying over a small range, for a total of 60 com-
binations, and compute a probability of Bi to be a corner based on
the fraction of corner classifications in this set. Refer to Section 7.3
for more details.

This value is available only for the anchor points of Bi . To extend
it to the whole point cloud, we apply k nearest neighbors regressor
with k = 50, thus obtaining per-point values 0 ⩽ w(p) ⩽ 1.

The set of points near corners is obtained by thresholding weights:

Pcorner = {p ∈ Psharp : w(p) > Tcorner}.

Curve and Corner Segmentation. For curve segmentation, we con-
sider the set of corner points Pcorner and the set Pcurve = Psharp \
Pcorner consisting of near-sharp points not detected as corners; we
process both these sets to extract clusters defining individual corners
and curves, respectively. To segment points belonging to individual
curves, we construct a dense kNN graph by creating edges between
all points in Pcurve located within sampling distance r (3) from each
other, and cut it into connected components. We treat each con-
nected component as defining one of ncurve curves, together they
constitute the set of point clusters corresponding to each curve:

Pcurve =
{
Pc ⊆ Pcurve | ∀p ∈ Pc ∃q ∈ Pc ,p , q : ∥p − q∥ ⩽ r

}ncurve
c=1 .

For corner points Pcorner, the procedure is similar; we extract the
final corner clusters Pcorner by separating connected components
of the detected corner sets.

Extraction of Curve Graph. From the segmentation, we construct
a curve graph fitted to Psharp, separately processing each set of
points corresponding to a curve. The next steps include (1) detecting
endpoints for each curve, marking curves as either open or closed
based on the detections, (2) approximating each curve with a short

path polyline, (3) connecting fitted polylines, corners, and endpoints
into a complete shape curve graph, and (4) refining endpoint and
corner locations.
To detect endpoints for a segmented curve cluster Pc , we con-

struct a neighborhood-based endpoint detector similar to our cor-
ner detector. We construct Euclidean neighborhoods Ei with the
radius Rendpoint centered at the anchor points pai sampled in Pc ,
compute their straight-line approximations (we compute PCA on
points in Ei and reduce its dimensionality to one), and parameterize
each point p ∈ Ei by a single coordinate t(p) obtained from PCA.
To identify curve endpoints, we compute the share of points p ∈ Ei
whose parametric coordinates t(p) are greater or smaller than the
parametric coordinate tai of the anchor pai :

Vi =
��� 1
|Ei |

∑
p∈Ei

sign(t(p) − tai)
���, (7)

declaring pai an endpoint if Vi is greater than threshold Tendpoint.
Intuitively, Vi = 0 corresponds to a fully symmetric case (equal
shares of points parameterized by coordinates with either sign)
while Vi = 1 indicates strong prevalence of points on either side of
an anchor. For a curve cluster Pc , if only one such anchor exists,
we select an anchor pai with the second largest value of Vi as a
second endpoint; for more than two detected endpoints, we select
the two most distant ones; if no such points are detected, the curve
is considered to be closed.

Next, we compute polyline approximations of curves. For an open
curve, we construct kNN graph by connecting all the curve anchor
points pai sampled in Pc within twice the average sampling distance
from each other, and initialize the polyline with a shortest path in
such graph connecting the detected endpoints.
To create a polyline for a closed curve, we sample three points

from the cluster by farthest point sampling, connect them to com-
pose a triangle, and proceed with the subdivision strategy. The
candidate subdivision points are identified by computing

psplit = argmax
pi ∈Pc

��d̂i − ∥pi −min
l

π l (pi)∥
�� (8)

over points pi from the current curve cluster Pc ∈ Pcurve, where
minl π l (pi) is a projection of pi onto the nearest polyline segment
l . To proceed with subdivision, we check an absolute difference
between the estimates d̂i and the actual distances ∥pi − π l (pi)∥
against the thresholdTsplit; for candidate points psplit exceeding this
value, we subdivide the polyline by assigning psplit a new polyline
node and splitting the corresponding segment in two. This choice
of psplit aims to keep the maximum polyline approximation error
below Tsplit for individual curves.
Finally, we substitute the detected open curve endpoints with

the respective nearest corner cluster centers, yielding a final curve
graphG(q, e) defined by the node positions q (corner cluster centers
and nodes of polylines) and connections e between them. The last

ACM Trans. Graph., Vol. 41, No. 4, Article 108. Publication date: July 2022.

DEF: Deep Estimation of Sharp Geometric Features in 3D Shapes • 108:11

step is node position optimization:

min
q

(1
|Psharp |

∑
p∈Psharp

|d̂(p) −
p − πG(q,e)(p)

| − ∑
q∈l [G(q,e)]

cosq
)
,

(9)
where πG (p) is the projection of a point p onto the nearest edge
in the curve graph G, and

∑
q∈l [G(q,e)] cosq is sum of cosines of

angles between the two consecutive edges incident to the node q,
computed only for the set of nodes l[G(q, e)] such that they have
exactly two incident edges (hence, it is locally linear). Intuitively,
the second term represents rigidity of polylines that prevents the
acute angles between edges. Optimization helps to position graph
nodes more accurately, especially at the intersections of multiple
feature curves, and the rigidity term makes polyline segments more
straight. After this step is finished, we can identify the final corner
positions as coordinates of graph nodes with more than two incident
segments.

Spline Fitting and Optimization. For spline fitting one needs to
obtain a consistent parameterization of each feature curve. We do
that by partitioning the curve graph into shortest paths between
graph nodes with degree not equal to 2, each path serving as a
proxy to a curve that defines parameter coordinates of points along
feature curve. For a path д represented as a sequence of graph nodes
qд = {qi }

|д |
i=1 we get a set of nearest points Pд ∈ Psharp, and compute

projections πд(pi), pi ∈ Pд and obtain values of parameters uд =

{ui }
|Pд |
i=1 as a cumulative sum of norms of πд(pi) along the path д.

Simultaneously, we compute knots tд as evenly spaced parameters;
number of knots is defined as max

(
5, |д |2

)
.

Fitting a spline sд to the path д results in a set of control points
cs that define the exact shape of the spline curve. Once the spline is
fitted, we can evaluate points Ps (cs) = γ (uд, Pд, tд, cs) on the spline
curve sд . These points, ideally, should be precisely as far away from
point cloud points Pд as a distance field d̂ suggests. To enforce this
property, we optimize over control points to shape the spline to the
distance values:

min
c

|Pд |∑
i=1

(
d̂i − ∥pi − γ (ui ,pi , ti , c)∥

)2
, (10)

wherepi ∈ Pд , d̂i is a corresponding distance value, andγ (ui ,pi , ti , c)
is a point corresponding to pi evaluated on the spline sд . Addition-
ally, we impose constraints on the spline endpoints to match the
polyline endpoints.
The optimization problem and constraints are similar for the

closed curves: endpoints of the spline should meet at the same point,
and the tangents at the endpoint positions should be equal.

Spline Post-Processing. To improve the final result, we apply post-
processing procedure that helps to keep only the curves that have
a good fit. First, we compute the quality metric as an F1 score of
the Chamfer distances between sampled curves and Psharp and vice
versa, thus getting the fit quality. Second, we turn off each curve
separately and compute themetric again. If the quality drops or stays
the same, we keep the curve in the final set of curves. Otherwise,

we eliminate that curve. The quality metric is given by:

CDX→Y =
1
NX

∑
x ∈X

inf
y∈Y

∥x − y∥2,

F1(Tmetric) =
2 · 1(CDX→Y ⩽ Tmetric) · 1(CDY→X ⩽ Tmetric)

1(CDX→Y ⩽ Tmetric) + 1(CDY→X ⩽ Tmetric)
,

(11)

where CDX→Y is a Chamfer distance from point set X to point set
Y , 1 is an indicator function, andTmetric is a threshold to convert the
real-valued distances into 0-1 hard labels. When using this metric
for post-processing, we assigned Psharp as one of the point sets, and
a discretized set of curves as another.
Finally, we apply filtering of curves based on their length. This

includes detecting the connected sets of curves, for each set we
count the number of curves that form it and compute the total
length of all curves in it. If the set contains less than four curves
with total length smaller than 20r , we discard such set altogether.

Our method requires setting the following parameters: threshold
on distances for selection of points near feature lines dsharp, corner
detector threshold Tcorner, endpoint detector radius Rendpoint, end-
point detector threshold Tendpoint, polyline optimization threshold
Tsplit. We express all of the parameters in the scale of sampling
distance r (3). We discuss the exact values of parameters in Supple-
mentary material.
For the illustration of the vectorization pipeline and the results

of our spline fitting procedure, refer to Figure 11 and Figure 17.

7 EXPERIMENTS
We start our experimental study by introducing themeasures of qual-
ity and providing training details in Section 7.1. We further evaluate
our models against prior art in a variety of synthetic and real-world
settings in Section 7.2. Section 7.3 demonstrates a parametric curve
extraction application. We investigate alternative choices of model
architecture and training configurations in Section 7.4. We conclude
with testing the robustness of our approach w.r.t. sampling patterns
and density variations in Section 7.5.

7.1 Experimental Setup
Measures of Quality. We evaluate our feature estimation method

in terms of several quality measures (distance-to-curve regression
and segmentation, as both are relevant in our case). We compute
the following measures to assess feature estimation performance:

• RMSE: the root mean squared error between the predicted
distances d̂(p) and the ground-truth distance-to-feature field
d(p). For a set of instances, we report the mean RMSE across
the respective items.

• RMSE-q95: the 95% quantile value of RMSE across a set of
instances captures the width of distance error distribution.

• Recall (T): we compute Recall using the predicted thresh-
olded labels ŝi = 1(d̂i < T) and the ground-truth distances
si = 1(di < T). We use Tsim = r for synthetic instances but
increase the threshold for real data to Tscan = 4r to account
for scan misalignments. Recall estimates the quality of feature
line estimation in the direct proximity of the ground-truth

ACM Trans. Graph., Vol. 41, No. 4, Article 108. Publication date: July 2022.

108:12 • Matveev, et al

Fig. 12. Visual comparison of DEF vs. competitor approaches on challenging image patch instances (synthetic image patches, n = 50, r = 0.02). Observe
that, for segmentation (left part of gallery), VCM struggles to detect subtle features (rows 1, 3) and leads to substantial amounts of false positives when
encountering large density variations or noisy inputs (rows 2, 4); EC-Net likewise tends to miss features (rows 1–2) and yield overall unstable predictions in
presence of noise (rows 3–4). Most evidently, ShF and PIE-NET deteriorate drastically in presence of noise (see rows 3–4) while producing imperfect predictions
for clean data. Additionally, PIE-NET, EC-Net, and VCM were not designed to estimate distances to nearest sharp edges (right gallery part); the only previous
method for predicting distances, ShF, shows extreme sensitivity to sampling and noise (rows 1–4). In contrast to most competitor methods, our deep models
are able to accurately perform segmentation and robustly estimate distance-to-feature fields; DEF successfully survives non-uniform, irregular, or noisy
sampling patterns, remaining sensitive to less pronounced features.

Fig. 13. DEF is significantly more robust to acquisition noise, compared to other approaches (the two left plots). Compared to the baseline approaches, DEF is
robust to feature sampling density (the two right plots).

feature line. As before, we report the mean value of Recall
computed across test instances.

• FPR (T): we compute the False Positives Rate using the thresh-
olded predictions and report mean FPR across patches or full
models. FPR estimates the fraction of points predicted as be-
longing to a sharp feature line but located outside the direct
proximity of the ground-truth feature line.

• CD, HD and SD: We use Chamfer Distance, Hausdorff Distance
and Sinkhorn Distance, respectively, for evaluating paramet-
ric curve extraction. These measures assess the discrepancy
between the extracted and the ground-truth sets of curves.

We provide the exact formulae for our quality measures in Supple-
mentary material. Unless specified otherwise, we present measure
values averaged across test instances (patches or full models).

Data and Training. We train networks on 4 nVidia Tesla V100
16Gb GPUs in parallel; we use the synchronous version of batch nor-
malization in all our architectures. All experiments were performed
using the PyTorch framework [Paszke et al. 2019], its higher-level
neural network API PyTorch Lightning [Falcon 2019], and the Hy-
dra framework [Yadan 2019] for configuring experiments. We use
Adam optimizer [Kingma and Ba 2014] with an initial learning rate

ACM Trans. Graph., Vol. 41, No. 4, Article 108. Publication date: July 2022.

DEF: Deep Estimation of Sharp Geometric Features in 3D Shapes • 108:13

of 0.001, multiplying it by 0.9 every epoch, and train all our models
with a total batch size of 32. We validate network performance on a
validation set of patches every epoch, stopping training when the
RMSE metric has no improvement over the ten consecutive epochs,
and select the model with the best performance on the validation
set of patches.
All training patches consist of 4096 (64 × 64) pixels. We divide

depth values in each patch by the 95% quantile value computed
among max depths for each patch across the training dataset; no
augmentations were applied to depth images. Unless specified other-
wise, our training datasets consist of 65,536 patches. The validation
set and test set include approximately 32,000 patches. We observed
that increasing the size of the training set further does not lead to
significant improvement in performance, and report more details in
the Supplementary material.

7.2 Comparisons
Baseline Approaches. We compare DEF against five state-of-the-

art methods either directly designed or adapted for extracting fea-
ture lines from sampled 3D shapes. Four of these methods are deep
learning-based, representing natural interest for comparisons [Liu
et al. 2021; Raina et al. 2019; Wang et al. 2020; Yu et al. 2018]; the
fifth method is the best-performing traditional approach based on
local set-based feature detection [Mérigot et al. 2010] (see Section 2
for more context). We briefly review the main principles underlying
these approaches below. Most competitor methods have a num-
ber of tunable parameters, commonly adjusted to obtain the best
results for a specific input shape; as we aim to compare on rela-
tively large datasets, we determine fixed parameters that maximize
method performance on the whole validation set, as explained in
the Supplemental; to obtain predictions, we run each method with
the selected set of its parameters on both local patches and complete
point-sampled 3D shapes.

Voronoi Covariance Measure (VCM) [Mérigot et al. 2010] is a non-
learning method for hard segmentation of a point cloud into sharp
and non-sharp points. For this, VCM computes the Voronoi covari-
ance measure of a point as a covariance matrix of the intersection
of an estimated Voronoi cell with a ball of radius R, where R is a
parameter of the method; a convolution radius ρ is used for smooth-
ing the measure. The input points are labelled by thresholding the
ratio of the smoothed covariance matrix’s eigenvalues, with thresh-
old T being another parameter. We have optimized the parameters
(ρ,R,T) to maximize Recall(1r) on each dataset, by a direct search,
for each data variety. VCM is expected to perform robustly across a
range of noise and sampling variations.

Sharpness Fields (ShF) [Raina et al. 2019] is a CNN for predicting
the sharpness field — a real-valued function with values close to 1 for
points near the feature lines and 0 in smooth areas. To this end, ShF
constructs local neighborhoods with fixed-size (30 × 30), uniformly
spaced points sampled from the underlying Moving Least Squares
proxy surface of the point cloud. The method requires normals as
an additional input, that we estimate using a neighborhood-based
method with the number of neighbors empirically set to 100. ShF
accepts a noise-free, uniformly sampled point cloud as input, thus,
we expected its performance to deteriorate for noisy inputs. We have

observed that, in most cases, predicted values do not increase mono-
tonically with distance to the feature line; however, the predicted
field is suitable for producing segmentation by thresholding; we
thus run a sweep to select the threshold value that would produce
the highest Recall on the training set. We also made an effort to
compare our distance-to-feature field outputs to the sharpness fields
produced by ShF directly: to that end, we find the most suitable
linear transformation of our field on the train subset.
Edge-Aware Consolidation Network (EC-Net) [Yu et al. 2018] in-

cludes a PointNet++[Qi et al. 2017] derived method for detection of
sharp feature lines as an auxiliary signal for point cloud upsampling.
The network predicts point locations exactly on the sharp feature
curves; we map this output to our patches by selecting one nearest
neighbor for each of the sharp points from EC-Net, resulting in a
hard segmentation-like output. In our comparisons, we use the orig-
inal pretrained model, that was trained on sampled patches with an
additive noise, possibly making it robust to noise variations of the
kind we use for evaluation.
PIE-NET [Wang et al. 2020] has a two-stage prediction pipeline

which (1) segments sharp feature curves and corner points using a
PointNet++ architecture [Qi et al. 2017] and (2) generates paramet-
ric curve proposals using a separate network, refining these using
an optimization approach. PIE-NET expects a noise-free, uniform
sample with 8,096 points representing a complete 3D shape, more-
over, samples are expected to land exactly on the sharp feature lines;
for these reasons, PIE-NET is unlikely to perform robustly on most
of our datasets. We use their pre-trained models to both segment
points lying in the proximity of the sharp feature curve and extract
parametric curves in the form of their point samples.

PC2WF [Liu et al. 2021] is a learning-based approach to infer para-
metric sharp feature lines, assuming only straight lines segments are
present. From an input point cloud, possibly noisy, PC2WF detects
corner points and infers edge segments connecting these corners;
the method is able to process relatively large point sets of up to
200,000 points. PC2WF was not designed to detect sharp features in
point clouds, so we compare the wireframe extraction quality only.
We use their pre-trained models.

Wireframes [Matveev et al. 2021] is an earlier version of our
parametric curve extraction pipeline. It accepts the same input as
our current vectorizationmethod, a point cloud of arbitrary size with
per-point distance-to-feature estimates from DEF neural network.
AlthoughWireframes share the overall structure with our current
method, previous approach has major flaws in its design which we
have resolved in the current method.

Patch-Based Comparison (DEF-Sim). We start with comparisons
to prior art by evaluating DEF vs. the baselines using our syn-
thetic patch datasets (DEF-Sim) to provide a direct network-to-
network comparison and eliminate the influence of postprocessing.
We present a statistical evaluation in Table 2, compare results visu-
ally in Figure 12, and plot dependencies of performance vs. noise
and resolution parameters for all methods in Figure 13.
Qualitatively, we observe that our method compares favorably

to all competitors (most evidently, ShF, VCM, and PIE-NET) on less
pronounced features that have smaller normal jumps (Figure 12,
rows 1,3); while thesemethods tend to be less sensitive to such subtle

ACM Trans. Graph., Vol. 41, No. 4, Article 108. Publication date: July 2022.

108:14 • Matveev, et al

Fig. 14. Comparison to state-of-the-art sharp feature line estimation methods on high-resolution synthetic full shape datasets (a) and real scanned datasets
representing full 3D shapes (b). Our method is able to robustly reconstruct a pointwise distance-to-feature field and scales to 3D shapes represented by
millions of points.

ACM Trans. Graph., Vol. 41, No. 4, Article 108. Publication date: July 2022.

DEF: Deep Estimation of Sharp Geometric Features in 3D Shapes • 108:15

features, DEF demonstrates increased robustness when facing such
geometry. For instances with large sampling distance variations
(Figure 12, row 2), ShF and EC-Net miss features while VCM and PIE-
NET produce substantial numbers of false positive, particularly in
under-sampled regions; for VCM, this is due to the uniform surface
sampling assumed in the model; DEF remains capable of accurately
localizing feature locations. In comparison with ShF and PIE-NET,
DEF performs notably better on noisy data for noise magnitudes of
up to r/2, with a moderate decrease in Recall but almost no change
in FPR, compared to two orders of magnitude increase in FPR from
0.33% to 19% for ShF (Figure 13, left two plots). This leads to the
results of these methods being unusable for noisy point clouds,
see Figure 12; however, such results are expected as ShF and PIE-
NET models that we used were not optimized on noisy datasets.
For varying sampling distance values, DEF still compares favorably
according to Recall and FPR measures (Figure 13, right two plots).
We made an effort to train our algorithm using the datasets de-

scribed in [Wang et al. 2020; Yu et al. 2018] to ensure conformity
in terms of training sets and input-output requirements. For the
EC-Net dataset, we use the original 32mesh files and feature anno-
tations; to create a PIE-NET-like dataset, we select meshes with up
to 30,000 vertices containing only Line, Circle, or BSpline curves;
in each case, we generate a dataset of 65,536 images for training
our method using the pipeline from Sections 4.1–4.2. We present
results in Table 2. Evaluation using DEF-Sim datasets indicate that
our method performs significantly better than PIE-NET ; compared
to EC-Net, our network keeps having 10× lower FPR but delivers less
accurate distance predictions; this is likely due to a low geometric
diversity of training data: the volume of the EC-Net dataset is two
orders of magnitude lower compared to our datasets.

Complete 3D Models (DEF-Sim). To obtain results on complete
models, we use DEF-Sim, the synthetic validation set of 68 sam-
pled 3D shapes (see Section 4.1), and apply our patch-based DEF
to each view of each shape without any fine-tuning on these data.
We further reconstruct a complete, object-level distance-to-feature
field using the algorithm described in Section 5.2; for our fusion,

Table 2. Our local patch-based networks for distance-to-feature estimation
and feature line segmentation are more effective compared to competitor
methods across a variety of segmentation and regression quality measures
(evaluated on synthetic image patches, n = 50, r = 0.02).

Method RMSE ↓ RMSE-q95 ↓ Recall (1r), %↑ FPR (1r), %↓
×10−3 ×10−3

Evaluation using DEF-Sim datasets
VCM [Mérigot et al. 2010] — — 49.1 3.1
EC-Net [Yu et al. 2018] — — 79.2 2.9
DEF (Trained on EC data) 124.1 501.1 56.0 0.15
PIE-NET [Wang et al. 2020] — — 32.0 3.8
DEF (Trained on PIE data) 86.2 451.8 57.1 0.1
ShF [Raina et al. 2019] 18.0 95.7 80.9 0.3

DEF (Ours) 11.1 42.5 80.02 0.02

Evaluation using EC-Net datasets
DEF (Trained on EC data) 192.9 573.1 46.3 1.5
DEF (Ours) 153.0 526.1 46.4 1.3

Table 3. Our method is able to reconstruct a robust estimate of a distance-
to-feature field defined for a complete 3D shape. While DEF achieves similar
Recall to VCM, it does so by truncating an accurate distance field and
demonstrates nearly 10× lower FPR.
∗ PIE-NET was invoked with 8,096 samples as input.

Method RMSE ↓ RMSE-q95 ↓ Recall (1r), %↑ FPR (1r), %↓
×10−3 ×10−3

VCM [Mérigot et al. 2010] — — 79.2 4.8
EC-Net [Yu et al. 2018] — — 48.5 0.2
PIE-NET∗ [Wang et al. 2020] — — 73.6 2.9
ShF [Raina et al. 2019] 623 761.4 69.8 0.3

DEF (Ours) 115.1 200.1 79.0 0.5

Table 4. Compared to the closest state-of-the-art competitor approach,
VCM, our method achieves 3× higher Recall (4r) on noisy and incomplete
scanned data, while maintaining a moderate FPR (4r). Quantitatively, our
method reconstructs the full distance-to-feature field with RMSE = 1.5mm
and RMSE-q95 = 2.9mm at a sampling distance of r = 0.5mm.

Method Recall (2mm), %↑ FPR (2mm), %↓

VCM [Mérigot et al. 2010] 29.5 10.2
EC-Net [Yu et al. 2018] 10.1 0.8

DEF (Ours) 91.7 20.1

we use nv = 128 views and perform view synthesis in orthographic
projection using 4 neighbors for each sampled point. To obtain the
final statistical estimate, we extract minimum value from the set of
valid interpolated predictions in (4).

We compare our approachwith competitors statistically in Table 3
and visually in Figure 14 (a). Most our complete 3D shapes include
from 106 to 107 point samples. Qualitatively, our method is able to
more robustly regress features with smaller difference in normal
orientations, undersampled features, or feature curves with large
density variations across the feature line, such as features in internal
cavities of a 3D shape.

In Figure 15, we additionally demonstrate an example reconstruc-
tion of a complete object-level distance field using DEF trained on
patches in the EC-Net dataset described above.

Real 3D Shapes (DEF-Scan). To perform an experimental evalua-
tion of distance-to-feature prediction quality for real-world noisy
3D scans, we use our real-world dataset of complete 3D scanned
shapes with sharp feature annotations. We first select a DEF CNN
model pre-trained on a synthetic dataset (with sampling distance
rmed = 0.05) and fine-tune it using the real annotated depth images.
To this end, we split the 84 scanned objects into training (42 objects,
981 scans), validation (21 shapes, 479 scans), and final testing (21 ob-
jects, 468 scans) subsets, and optimize our model until convergence
on the validation set. Next, we apply the optimized network to each
view of the testing dataset and reconstruct a complete distance-to-
feature field using our fusion algorithm (Section 5.2) using nv = 12
views available for each 3D shape; here we perform view synthesis
in perspective projection using 4 neighbors for each sampled point.

ACM Trans. Graph., Vol. 41, No. 4, Article 108. Publication date: July 2022.

108:16 • Matveev, et al

Overall, our method reconstructs the complete distance field with
RMSE = 1.5mm and RMSE-q95 = 2.9mm. We report performance
against competitor approaches in Table 4 using Recall (4r) and
FPR (4r) measures where the real-world sampling distance r =
0.4mm. Compared to VCM and EC-Net, our results suggest that DEF
systematically outperforms the competitor methods by a significant
margin (e.g., DEF achieves 3× higher Recall compared to the best-
performing competitor method, VCM); the methods ShF and PIE-
NET produced little to no sharpness detections for all shapes that
we have used. These observations are also reflected in qualitative
results in Figure 14 (b).

7.3 Extracting Parametric Curves
We run our vectorization method on the complete 3D shapes sam-
pled using nv = 128 views, where predictions have been computed
by the DEF network and a complete object-level distance field has
been obtained in the previous steps (Section 7.2). After setting pa-
rameters, we run our method without manual intervention. The
output consists of (1) spline curve parameters and (2) endpoint co-
ordinates for straight lines, readily available for further processing.

PIE-NET [Wang et al. 2020] requires subsampling our point clouds
to 8,096 points. We applied the farthest point sampling technique
to reduce the size of the point clouds. PIE-NET parametric curves
extraction stage produces a set of points sampled along the curves.

Fig. 15. Our method is able to leverage various feature-annotated training
collections. A complete object-level field then can be reconstructed from
predictions by a model pre-trained on (a) the EC-Net dataset [Yu et al. 2018]
and (b) our DEF-Sim dataset (see Section 7.2). As our data is two orders of
magnitude larger in size, predictions obtained using our model are generally
more accurate.

Table 5. Compared to PIE-NET parametric feature curve extraction stage,
DEF achieves an order of magnitude more accurate reconstruction.

Method CD ↓ HD ↓ SD ↓

PIE-NET [Wang et al. 2020] 0.97 2.19 0.84

DEF (Ours) 0.04 0.55 0.05

PC2WF [Liu et al. 2021] is essentially free of point cloud size;
however, to reduce the computation time andmake sampling density
closer to the point clouds of the original paper, we subsampled our
shapes to 200,000 points each. PC2WF outputs pairs of endpoint
coordinates that represent a straight line wireframe.

Wireframes [Matveev et al. 2021] has the same input and output
as our method.

To assess the wireframe quality, we ran our pipeline on the vali-
dation set of 68 complete 3D models (DEF-Sim) along with PIE-NET
and compared the obtained results to the ground truth parametric
curves. To compute the metrics, we sampled all the predicted curves
and lines along with the ground truth set of curves into point sets
and derived distances between the closest points to calculate CD,
HD, and SD. The aggregated statistical estimation of metrics for our
method and PIE-NET are reported in Table 5. We observed a signif-
icant difference between one-sided CD’s for PIE-NET predictions.
Specifically, the average distance from ground truth to prediction is
0.9, the average distance from prediction to ground truth is 0.064.
That implies that PIE-NET misses many curve instances, but it out-
puts relatively accurate reconstructions for the detected ones. In
turn, the one-sided CD of our method is 0.024 from ground truth to
prediction and 0.02 for distance in the opposite direction. We refer
the reader to Figure 16 for the qualitative results.

Since PC2WF outputs straight lines only, we did not run it on the
whole set of validation shapes and report no statistical performance;
instead, we provide qualitative results for their method only on the
small subset of shapes presented in Figure 16.

For both PIE-NET and PC2WF, qualitative results depict the shapes
from our validation set and figures from the respective papers that
were used to evaluate the quality of the corresponding methods.

Results indicate that our method is more flexible and robust with
respect to the shape sampling variation and geometric complexity.
Compared to PIE-NET, DEF detects more curve instances, and due to
the predicted distance field, the fitting procedure does not rely solely
on the point positions and is free of sampling issues. Our pipeline
can fit curves of different types when PC2WF has been designed for
straight lines. On the other hand, the performance of our method
is strongly conditioned by the choice of parameters when both
PIE-NET and PC2WF, as learning-based methods, are almost free
of parameter tuning. We described a simple tuning procedure that
only exploits the distance field estimation to mitigate that.

Additionally, we demonstrate how our current vectorization pipeline
compares to the previous version (Wireframes). We compare the
two methods in Figure 18. The improved corner detection and kNN-
based polyline construction enable our method to resolve cases of
close corners and complex curves. Curve graph topology guides the
curve fitting stage and, if imprecise, may lead to outlier curves as it
is seen in the Wireframes output.

7.4 Ablation Studies
We conducted a large number of computational experiments to
determine the optimal parameters of our method; our main conclu-
sions were outlined in Section 5; here, we summarize the results
of the studies supporting these conclusions. We present a separate
stress-test to explore the robustness of our approach in Section 7.5.

ACM Trans. Graph., Vol. 41, No. 4, Article 108. Publication date: July 2022.

DEF: Deep Estimation of Sharp Geometric Features in 3D Shapes • 108:17

Fig. 16. We use distance field estimates obtained by our method for complete, large sampled shapes (up to 107 points) to reconstruct full parametrizations of
their feature curves. We compare our inference results to PIE-NET (a) and PC2WF (b) using our validation set (rows 1–2) and on validation shapes from the
corresponding papers (rows 3–4).

Fig. 17. We showcase twelve additional examples of extracted parametric representations next to the ground truth sets of curves. Row 4 includes visually
inferior examples where our method struggles to output clean and complete parametric representation.

Table 6. Compared to point-based DGCNN [Wang et al. 2019], our CNN-based learning method more efficiently regresses distance-to-feature values. For
image-sampled patches that tend to be non-uniform, adding prior sharpness estimates from VCM yields no advantage to either method.

Dataset Method RMSE ↓ RMSE-q95 ↓ Recall (1r), %↑ FPR (1r), %↓
×10−3 ×10−3

Regular images (no bg, reprojected to points) DGCNN + Histogram loss 11.3 55.5 80.9 3.7 × 10−2

Regular images (no bg, reprojected to points) DGCNN + Histogram loss + VCM 13.6 70.0 68.8 4.8 × 10−2

Regular images (no bg) CNN + Histogram loss (DEF) 9.7 32.5 84.6 3 × 10−2

Regular images (no bg) CNN + Histogram loss + VCM 10.9 36.8 80.4 3.7 × 10−2

Regular images (with bg, DEF-Sim) CNN + Histogram loss (DEF) 11.1 42.5 80.0 2.2 × 10−2

Learning Architectures. In this paper, our focus is on 3D data rep-
resented as a collection of depth images, one of the most common
types of scanned 3D data. this allows us to use standard convolu-
tional networks that take advantage of the regular sampling pattern
in the data. To quantify the advantage obtained from using this addi-
tional regularity of sampling, we consider an alternative approach,
ignoring depth image structure, and viewing the collection of im-
ages as an unstructured point set. As standard CNNs can no longer
be applied to this type of data, we use the DGCNN network [Wang
et al. 2019]; we set depth D = 6 and widthW = 64 × 1.35D−3 ≈ 150.
Similarly to the CNN version, we trained the network using the
Histogram loss, studying various modifications, most importantly,
training the DGCNN using the ground-truth distances d(p) and
VCM sharpness labels as an additional input.

Fig. 18. Our current pipeline improves corner detection (row 1) and is able
to resolve complex curves (row 2), whereasWireframes outputs imprecise
curve graphs that lead to outlier curves with extreme variation.

For highly non-uniform image-sampled patches (e.g., rays pass-
ing nearly in parallel to parts of the surface), VCM struggles to
extract feature-related information. Thus, adding VCM labels yields
no advantage for range-scan data for both the DGCNN and the CNN
DEF models. Generally, we observe DEF networks to outperform
point-based models (DGCNN trained with Histogram loss super-
vised by d(p) and VCM) on regularly sampled range-scan data, see
Table 6, middle rows. CNN DEF models additionally demonstrate
better noise-resistance compared to the point-based alternative, as
can be seen in Figure 13. In this experiment, we train CNN DEF
and DGCNN models on noisy sampled data, and find that the latter
yields lower Recall and higher FPR values across noise magnitudes.

Data Generation. We mention an additional configuration of in-
terest, obtained by considering two versions of the range-scan data:
a filtered version that excludes patches with depth discontinuities or
background pixels (we refer to it as no bg), and a dataset including all
types of patches (referred to as with bg); we train models separately
on either data variety. DEF models trained on patch datasets without
background pixels perform quantitatively better for similar testing
data, see Table 6, bottom rows; however, as shown in Figure 19,

Fig. 19. We opt for training on instances with background and depth dis-
continuities (with bg, (c)); excluding these (no bg, (b)) yields suboptimal
predictions, particularly near patch boundaries.

ACM Trans. Graph., Vol. 41, No. 4, Article 108. Publication date: July 2022.

108:18 • Matveev, et al

networks trained on data with background pixels yield more stable
predictions, particularly on near-boundary pixels.

Loss Type. (Section 5.1). The results of our study of loss functions
lead us to find the Histogram loss [Imani andWhite 2018] to perform
favorably compared to L1/L2 losses (see Table 1).

Reconstruction on Complete 3D Models. We investigate the two
crucial factors in the reconstruction of distance-to-feature fields om
complete sampled 3D shapes: the number of views nv and the in-
ference function applied over the set Dp of interpolated predictions
in (4). To this end, we consider an order of magnitude fewer set of
nv = 18 views and two additional inference functions: truncated
min and linear fit, as well as compare against an aggregation method
applied on top of DGCNN predictions. Truncated min is computed
by removing 20% of smallest values in Dp and taking min; linear fit
fits a robust version of local linear regression [Huber et al. 1973]
to d(p) in each sampled point p by extracting local patches of Eu-
clidean neighbors of size 50, and computes the final estimate as a
fitted value in p.

Statistical results for our sets of 68 synthetic and 84 real scanned
models are presented in Table 7.We focus our attention on the Recall
and RMSE measures and conclude that having a sufficient number
of views is crucial to the successful reconstruction of our distance
function. Comparisons of inference functions generally lead to trun-
cated min improving over RMSE but not Recall measure compared
to min, with linear fit being inferior to both these approaches.

Fig. 20. Our approach is able to withstand (b) high noise magnitudes and
(a), (c), (d) large variations in sampling density.

Fig. 21. We experimentally observe our method to benefit from increasing
the number of views used during fusion. For this synthetic shape, nv = 18
projections give an approximate Recall of 90%.

7.5 Robustness Study
Noise and Sampling Sensitivity. We examine the noise sensitivity

of our method by training DEF CNNs on datasets with increasing
noise levels and coarse sampling, and using these in reconstructing
distance fields on complete 3Dmodels. We vary the noise magnitude
from 0 up to 2r , where r is sampling distance. Performance of the
networks in isolation drops moderately as noise magnitude rises,
as seen in Figure 13; the models show particular robustness to
sampling distance variations, indicating weak influence of sampling
on performance. Figure 20 demonstrates qualitative reconstruction
results for a number of 3D shapes sampled in a variety of ways; note
that overall prediction stays stable across various setups.

Sensitivity to Number of Views. We investigate how the perfor-
mance depends on the number of available views; for this experi-
ment, we take 1024 views following a geodesic spiral around the ob-
ject, and perform fusion using nv = 2, 4, 8, 16, 64, 128, 256 views. We
present qualitative reconstruction results in Figure 21 and demon-
strate performance dynamics in Figure 22.We observe a clear benefit
from increasing the number of views, and achieve Recall of approx-
imately 90% with 16 views. The dynamics of RMSE and Recall/FPR
measures indicate different statistical effects for min vs. truncated
min inference function in (4). More specifically, while min provides
superior Recall, it stagnates on RMSE as more data are added, not
representing correctly the true distance-to-feature field. In contrast,
truncated min is able to continue improving both RMSE and FPR
measures, but shows saturation of Recall as smallest values are being
cutoff from the set Dp in (4).

8 CONCLUSIONS
We presented a new learning-based pipeline for automatic sharp
feature detection from sampled 3D data. Our approach is based on
training and comparing different methods on a dataset annotated
with distance-to-feature information derived from the ABC dataset
of 3D CADmodels. Our method works on patches sampled from the
input shape, with predictions combined in a postprocessing step.
We demonstrate that the CNN-based model operating on reg-

ularly sampled range images, when such images are available as
an input or via resampling the input, is an efficient predictor for
distance-to-feature fields. The image-based CNN model is also the
most robust to input noise in our experiments. A somewhat surpris-
ing observation is that training a regression model benefits from
using a histogram loss. At the same time, providing additional inputs,
or including additional outputs in training, did not lead to signifi-
cant improvements in accuracy either for image- or for point-based
networks, except adding VCM as input to DGCNN.

ACM Trans. Graph., Vol. 41, No. 4, Article 108. Publication date: July 2022.

DEF: Deep Estimation of Sharp Geometric Features in 3D Shapes • 108:19

Table 7. We demonstrate quantitative results of reconstructing distance-to-feature fields on complete 3D models using variations of our approach. For both
DEF-Sim and DEF-Scan collections, we find a significantly better Recall being achieved by min fusion, while RMSE favors truncated min.

Dataset Method RMSE, ↓ RMSE-q95, ↓ Recall (T), %↑ FPR (T), %↓
×10−3 ×10−3 T = 1r T = 4r T = 1r T = 4r

DEF-Sim (crops) DGCNN + Histogram loss (nv = 18, min) 247.6 287.9 52.4 92.3 0.2 2
DEF-Sim DEF (nv = 18, linear fit) 255.1 351.6 0 3.1 0 0
DEF-Sim DEF (nv = 18, truncated min) 120.8 227.4 12.5 74.9 0 0.7
DEF-Sim DEF (nv = 18, min) 100.2 214.1 47.9 92.3 0.2 2
DEF-Sim DEF (nv = 128, truncated min) 62.4 157.1 31.8 90.9 0 1
DEF-Sim DEF (nv = 128, min) 115.1 200.1 79 98 0.5 5.3

Dataset Method RMSE,mm↓ RMSE-q95, mm↓ T = 0.5mm T = 2mm T = 0.5mm T = 2mm

DEF-Scan DEF (nv = 12, linear fit) 1.27 2.36 — 70.1 — 7.9
DEF-Scan DEF (nv = 12, truncated min) 1.25 2.3 — 80.9 — 9.5
DEF-Scan DEF (nv = 12, min) 1.54 2.85 — 91.7 — 20.1

Fig. 22. Qualitatively, reconstructing distance-to-feature field on a complete
3D shape is able to detect the vast majority of features with around nv = 16
views; increasing the number of views to nv = 32, 64, or 128 refines and
stabilizes these detections.

We compared our results to recent learning-based methods and
a representative high-quality traditional method, demonstrating
quantitative and qualitative improvements over these approaches.
For instance, the proposed DEF outperforms the best-performing
approach by 4% in terms of Recall measure while offering an order of
magnitude improvement in false positives rate (from 0.3% to 0.03%).
Our method generalizes to real data after fine-tuning; we are not
aware of any other feature estimation approach tested on a large
collection of real data with manually annotated ground truth. Our
approach also scales to orders of magnitude larger point clouds,
which has not been successfully shown before.

We make publicly available the two collections of datasets, the
benchmarks, the implementation of all baselines, the reference im-
plementation of our method, and our trained models to foster addi-
tional work in this direction.

9 LIMITATIONS AND FUTURE WORK
Limitations of our approach to feature estimation include

(1) Feature Definition. Our definition of sharp geometric features
depends on a relatively large 18◦ normals angle threshold
(normals inner product ≈ 0.95). However, for arbitrarily-
oriented normals (e.g., the original ABC data [Koch et al.
2019]), we use the absolute of the inner product, and our
annotations do not reflect very sharp edges (i.e., those having

normals whose inner product is larger than 0.95); this special
case remains an open issue.

(2) Data Annotation Procedure. For complex geometry (e.g., folded
shapes, shapes with rich geometric detail in internal cavities),
our distance-to-feature annotations may produce spurious
signal on flat surfaces due to feature curves that are close
in Euclidean (but not geodesic) sense; we exclude such data
from training. In such instances, using geodesic instead of
local Euclidean distances is more appropriate.

(3) Visibility and Cross-View Consistency. Dependence on feature
visibility can be viewed as a limitation of our approach; how-
ever, for common real data acquired by scanners, only visible
features are present. We eliminate inconsistency in per-view
predictions in each 3D surface point by obtaining multiple
likely distance-to-feature values, then statistically inferring a
final value (e.g., by taking min).

(4) Feature Ambiguity. Sufficiently dense sampling of nearby fea-
tures is a crucial requirement for our algorithm to accurately
distinguish individual features. In instances where having
enough (e.g., 8 or more) samples between feature curves is
possible, our method efficiently relates samples to respec-
tive closest feature lines; otherwise, close feature curves may
cause incorrect clustering of points.

(5) Parametric Curve Extraction. Limitations of our vectoriza-
tion method mainly stem from the quality of the extracted
distance-to-feature field. For instances with varying sampling
density or unstable distance values, our method may struggle
with distinguishing close curves or concentric circles (see,
e.g., Figure 17, row 4). A partly related effect is gluing together
two close corners (see, e.g., Figure 16, row 4).

Future Work in the direction of our research may include
(1) Extending to Features of Multiple Types. We have used inte-

rior curves in all training examples on patches, however we
hypothesize that training with boundary (contour) curves
on whole shapes or patches with boundary, i.e., distinguishing
different feature types, might be beneficial.

(2) Reconstruction of a Complete Distance Field. Our procedure
for inferring distance-to-feature fields on complete 3D shapes

ACM Trans. Graph., Vol. 41, No. 4, Article 108. Publication date: July 2022.

108:20 • Matveev, et al

is agnostic to the type of function that it reconstructs; at
the same time, our distance-to-feature is a non-negative,
piecewise-linear, bounded function; incorporating such forms
of explicit prior knowledge about this function can consider-
ably improve prediction accuracy.

(3) Real-World Prediction. We believe that extending our prelimi-
nary study of feature estimation in scanned 3D shapes to a
full, robust algorithm capable of vectorizing real-world scans
represents a promising research direction.

ACKNOWLEDGMENTS
We are grateful to Prof. Dzmitry Tsetserukou (Skoltech) and his
laboratory staff for providing the 3D printing device and technical
support. We thank Sebastian Koch (Technical University of Berlin),
Timofey Glukhikh (Skoltech) and Teseo Schneider (New York Uni-
versity) for providing assistance in data generation. We also thank
Maria Taktasheva (Skoltech) for assistance in computational ex-
periments. We acknowledge the use of computational resources
of the Skoltech CDISE supercomputer Zhores for obtaining the re-
sults presented in this paper [Zacharov et al. 2019]. The work was
supported by the Analytical center under the RF Government (sub-
sidy agreement 000000D730321P5Q0002, Grant No. 70-2021-00145
02.11.2021).

REFERENCES
D. Bazazian, J. R. Casas, and J. Ruiz-Hidalgo. 2015. Fast and Robust Edge Extraction

in Unorganized Point Clouds. In 2015 International Conference on Digital Image
Computing: Techniques and Applications (DICTA). 1–8. https://doi.org/10.1109/
DICTA.2015.7371262

D. Bazazian and ME. Parés. 2021. EDC-Net: Edge Detection Capsule Network for 3D
Point Clouds. Applied Sciences 11, 4: 1833 (2021), 1–16. https://doi.org/10.3390/
app11041833

Yuanhao Cao, Liangliang Nan, and Peter Wonka. 2016. Curve networks for surface
reconstruction. arXiv preprint arXiv:1603.08753 (2016).

Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio Ganov-
elli, and Guido Ranzuglia. 2008. Meshlab: an open-source mesh processing tool.. In
Eurographics Italian chapter conference, Vol. 2008. Salerno, Italy, 129–136.

Joel II Daniels, Linh K Ha, Tilo Ochotta, and Claudio T Silva. 2007. Robust smooth
feature extraction from point clouds. In IEEE International Conference on Shape
Modeling and Applications 2007 (SMI’07). IEEE, 123–136.

Joel Daniels Ii, Tilo Ochotta, Linh K Ha, and Cláudio T Silva. 2008. Spline-based feature
curves from point-sampled geometry. The Visual Computer 24, 6 (2008), 449–462.

Kris Demarsin, Denis Vanderstraeten, Tim Volodine, and Dirk Roose. 2007. Detection
of closed sharp edges in point clouds using normal estimation and graph theory.
Computer-Aided Design 39, 4 (2007), 276–283.

WA Falcon. 2019. PyTorch Lightning. GitHub. Note:
https://github.com/PyTorchLightning/pytorch-lightning 3 (2019).

Shachar Fleishman, Daniel Cohen-Or, and Cláudio T Silva. 2005. Robust moving least-
squares fitting with sharp features. ACM transactions on graphics (TOG) 24, 3 (2005),
544–552.

Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora Vig. 2016. Virtual worlds as
proxy for multi-object tracking analysis. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 4340–4349.

T. Hackel, J. D. Wegner, and K. Schindler. 2016. Contour Detection in Unstructured 3D
Point Clouds. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 1610–1618. https://doi.org/10.1109/CVPR.2016.178

Timo Hackel, Jan D. Wegner, and Konrad Schindler. 2017. Joint classification and
contour extraction of large 3D point clouds. ISPRS Journal of Photogrammetry and
Remote Sensing 130 (2017), 231 – 245. https://doi.org/10.1016/j.isprsjprs.2017.05.012

Ankur Handa, Viorica Patraucean, Vijay Badrinarayanan, Simon Stent, and Roberto
Cipolla. 2016. Understanding real world indoor scenes with synthetic data. In
Proceedings of the IEEE conference on computer vision and pattern recognition. 4077–
4085.

JH Hannay and JF Nye. 2004. Fibonacci numerical integration on a sphere. Journal of
Physics A: Mathematical and General 37, 48 (2004), 11591.

Richard Hartley and Andrew Zisserman. 2004. Multiple View Geometry in Computer Vi-
sion (2 ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511811685

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 770–778.

Peter Henderson, Jieru Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky, and Joelle
Pineau. 2020. Towards the systematic reporting of the energy and carbon footprints
of machine learning. Journal of Machine Learning Research 21, 248 (2020), 1–43.

Chems-Eddine Himeur, Thibault Lejemble, Thomas Pellegrini, Mathias Paulin, Loic
Barthe, and Nicolas Mellado. 2021. PCEDNet: A Lightweight Neural Network for
Fast and Interactive Edge Detection in 3D Point Clouds. ACM Transactions on
Graphics (TOG) 41, 1 (2021), 1–21.

Hui Huang, Shihao Wu, Minglun Gong, Daniel Cohen-Or, Uri Ascher, and Hao Richard
Zhang. 2013. Edge-aware point set resampling. ACM transactions on graphics (TOG)
32, 1 (2013), 9.

Peter J Huber et al. 1973. Robust regression: asymptotics, conjectures and Monte Carlo.
The annals of statistics 1, 5 (1973), 799–821.

Ehsan Imani and Martha White. 2018. Improving Regression Performance with Distri-
butional Losses (Proceedings of Machine Learning Research), Jennifer Dy and Andreas
Krause (Eds.), Vol. 80. PMLR, Stockholmsmässan, Stockholm Sweden, 2157–2166.
http://proceedings.mlr.press/v80/imani18a.html

Tejas Khot, Shubham Agrawal, Shubham Tulsiani, Christoph Mertz, Simon Lucey, and
Martial Hebert. 2019. Learning Unsupervised Multi-View Stereopsis via Robust
Photometric Consistency. arXiv:cs.CV/1905.02706

Sangpil Kim, Hyung-gun Chi, Xiao Hu, Qixing Huang, and Karthik Ramani. 2020.
A Large-scale Annotated Mechanical Components Benchmark for Classification
and Retrieval Tasks with Deep Neural Networks. In Proceedings of 16th European
Conference on Computer Vision (ECCV).

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov,
Evgeny Burnaev, Marc Alexa, Denis Zorin, and Daniele Panozzo. 2019. ABC: A
big CAD model dataset for geometric deep learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 9601–9611.

Eric-Tuan Lê, Minhyuk Sung, Duygu Ceylan, Radomir Mech, Tamy Boubekeur, and
Niloy J Mitra. 2021. CPFN: Cascaded Primitive Fitting Networks for High-Resolution
Point Clouds. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 7457–7466.

Kai Wah Lee and Pengbo Bo. 2016. Feature curve extraction from point clouds via
developable strip intersection. Journal of Computational Design and Engineering 3,
2 (2016), 102 – 111. https://doi.org/10.1016/j.jcde.2015.07.001

Lingxiao Li, Minhyuk Sung, Anastasia Dubrovina, Li Yi, and Leonidas J Guibas. 2019.
Supervised fitting of geometric primitives to 3d point clouds. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2652–2660.

Y. Lin, C. Wang, B. Chen, D. Zai, and J. Li. 2017. Facet Segmentation-Based Line Segment
Extraction for Large-Scale Point Clouds. IEEE Transactions on Geoscience and Remote
Sensing 55, 9 (2017), 4839–4854. https://doi.org/10.1109/TGRS.2016.2639025

Yangbin Lin, Cheng Wang, Jun Cheng, Bili Chen, Fukai Jia, Zhonggui Chen, and
Jonathan Li. 2015. Line segment extraction for large scale unorganized point clouds.
ISPRS Journal of Photogrammetry and Remote Sensing 102 (2015), 172 – 183. https:
//doi.org/10.1016/j.isprsjprs.2014.12.027

Yujia Liu, Stefano D’Aronco, Konrad Schindler, and Jan Dirk Wegner. 2021. PC2WF:
3D Wireframe Reconstruction from Raw Point Clouds. CoRR abs/2103.02766 (2021).
arXiv:2103.02766 https://arxiv.org/abs/2103.02766

Albert Matveev, Alexey Artemov, Denis Zorin, and Evgeny Burnaev. 2021. 3D Para-
metric Wireframe Extraction Based on Distance Fields. In 2021 4th International
Conference on Artificial Intelligence and Pattern Recognition (AIPR 2021). Association
for Computing Machinery, New York, NY, USA, 316–322. https://doi.org/10.1145/
3488933.3488982

Quentin Mérigot, Maks Ovsjanikov, and Leonidas J Guibas. 2010. Voronoi-based curva-
ture and feature estimation from point clouds. IEEE Transactions on Visualization
and Computer Graphics 17, 6 (2010), 743–756.

Open CASCADE Technology OCCT 2021. Open CASCADE Technology OCCT. https:
//www.opencascade.com/. Accessed: 2021-06-01.

Parasolid: 3D Geometric Modeling Engine 2021. Parasolid: 3D Geometric Mod-
eling Engine. https://www.plm.automation.siemens.com/global/en/products/
plm-components/parasolid.html. Accessed: 2021-06-01.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information Processing Systems 32,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alche-Buc, E. Fox, and R. Gar-
nett (Eds.). Curran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. 2017. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. In Advances in neural

ACM Trans. Graph., Vol. 41, No. 4, Article 108. Publication date: July 2022.

https://doi.org/10.1109/DICTA.2015.7371262
https://doi.org/10.1109/DICTA.2015.7371262
https://doi.org/10.3390/app11041833
https://doi.org/10.3390/app11041833
https://doi.org/10.1109/CVPR.2016.178
https://doi.org/10.1016/j.isprsjprs.2017.05.012
https://doi.org/10.1017/CBO9780511811685
http://proceedings.mlr.press/v80/imani18a.html
http://arxiv.org/abs/cs.CV/1905.02706
https://doi.org/10.1016/j.jcde.2015.07.001
https://doi.org/10.1109/TGRS.2016.2639025
https://doi.org/10.1016/j.isprsjprs.2014.12.027
https://doi.org/10.1016/j.isprsjprs.2014.12.027
http://arxiv.org/abs/2103.02766
https://arxiv.org/abs/2103.02766
https://doi.org/10.1145/3488933.3488982
https://doi.org/10.1145/3488933.3488982
https://www.opencascade.com/
https://www.opencascade.com/
https://www.plm.automation.siemens.com/global/en/products/plm-components/parasolid.html
https://www.plm.automation.siemens.com/global/en/products/plm-components/parasolid.html
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

DEF: Deep Estimation of Sharp Geometric Features in 3D Shapes • 108:21

information processing systems. 5099–5108.
Prashant Raina, Sudhir Mudur, and Tiberiu Popa. 2019. Sharpness fields in point clouds

using deep learning. Computers & Graphics 78 (2019), 37–53.
RangeVision Spectrum 2021. RangeVision Spectrum - a new 3D high-resolution scanner.

https://rangevision.com/en/products/spectrum/. Accessed: 2021-06-01.
Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional

networks for biomedical image segmentation. In International Conference on Medical
image computing and computer-assisted intervention. Springer, 234–241.

Gopal Sharma, Difan Liu, Subhransu Maji, Evangelos Kalogerakis, Siddhartha Chaud-
huri, and Radomír Měch. 2020. Parsenet: A parametric surface fitting network for
3d point clouds. In European Conference on Computer Vision. Springer, 261–276.

Maria-Laura Torrente, Silvia Biasotti, and Bianca Falcidieno. 2018. Recognition of
feature curves on 3D shapes using an algebraic approach to Hough transforms.
Pattern Recognition 73 (2018), 111–130.

Xiaogang Wang, Yuelang Xu, Kai Xu, Andrea Tagliasacchi, Bin Zhou, Ali Mahdavi-
Amiri, and Hao Zhang. 2020. PIE-NET: Parametric Inference of Point Cloud Edges.
Advances in Neural Information Processing Systems 33 (2020).

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M
Solomon. 2019. Dynamic graph cnn for learning on point clouds. ACM Transactions
on Graphics (TOG) 38, 5 (2019), 1–12.

Christopher Weber, Stefanie Hahmann, and Hans Hagen. 2010. Sharp feature detection
in point clouds. In 2010 Shape Modeling International Conference. IEEE, 175–186.

Karl D. D. Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao Du, Joseph G. Lambourne, Ar-
mando Solar-Lezama, andWojciechMatusik. 2020. Fusion 360 Gallery: ADataset and
Environment for Programmatic CADReconstruction. arXiv preprint arXiv:2010.02392
(2020).

Nan Xue, Song Bai, Fudong Wang, Gui-Song Xia, Tianfu Wu, and Liangpei Zhang.
2019. Learning attraction field representation for robust line segment detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
1595–1603.

Omry Yadan. 2019. Hydra - A framework for elegantly configuring complex applications.
Github. https://github.com/facebookresearch/hydra

Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. 2018. EC-
Net: an Edge-aware Point set Consolidation Network. In Proceedings of the European
Conference on Computer Vision (ECCV). 386–402.

Igor Zacharov, Rinat Arslanov,MaksimGunin, Daniil Stefonishin, Andrey Bykov, Sergey
Pavlov, Oleg Panarin, Anton Maliutin, Sergey Rykovanov, and Maxim Fedorov. 2019.
“Zhores”-Petaflops supercomputer for data-driven modeling, machine learning and
artificial intelligence installed in Skolkovo Institute of Science and Technology. Open
Engineering 9, 1 (2019), 512–520.

ACM Trans. Graph., Vol. 41, No. 4, Article 108. Publication date: July 2022.

https://rangevision.com/en/products/spectrum/
https://github.com/facebookresearch/hydra

	Abstract
	1 Introduction
	2 Related work
	3 Overview
	4 Datasets with distance-to-feature annotation
	4.1 Dataset Design
	4.2 Synthetic Datasets: DEF-Sim
	4.3 Real-World Datasets: DEF-Scan

	5 Deep Estimation of Distance-to-Feature Fields
	5.1 Learning Patch-Based Deep Estimators
	5.2 Reconstructing Distance-to-Feature Fields on Complete 3D Models

	6 Application: Extraction of Parametric Feature Curves
	7 Experiments
	7.1 Experimental Setup
	7.2 Comparisons
	7.3 Extracting Parametric Curves
	7.4 Ablation Studies
	7.5 Robustness Study

	8 Conclusions
	9 Limitations and Future Work
	Acknowledgments
	References

